Solving Discriminant Form Equations Via Unit Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Norm Form Equations Via Lattice Basis Reduction

The author uses irrationality and linear independence measures for certain algebraic numbers to derive explicit upper bounds for the solutions of related norm form equations. The Lenstra-Lenstra-Lovász lattice basis reduction algorithm is then utilized to show that the integer solutions to NK/Q(x 4 √ N4 − 1 + y 4 √ N4 + 1 + z) = ±1 (where K = Q( 4 √ N4 − 1, 4 √ N4 + 1)) are given by (x, y, z) =...

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Solving resultant form equations over number fields

We give an efficient algorithm for solving resultant form equations over number fields. This is the first time that such equations are completely solved by reducing them to unit equations in two variables.

متن کامل

Solving Diophantine Equations via Lucas-Lehmer Theory

In this work we look at an approach to solving Pell’s equation using continued fractions and fundamental units in real quadratic orders. We demonstrate that there is an underlying general approach using Lucas-Lehmer methods for solving Pell and other quadratic Diophantine equations that is often overlooked in the literature. Mathematics Subject Classification: Primary: 11D09; 11A55; Secondary: ...

متن کامل

Solving partial differential equations via sparse SDP

To solve a partial differential equation (PDE) numerically, we formulate it as a polynomial optimization problem (POP) by discretizing it via a finite difference approximation. The resulting POP satisfies a structured sparsity, which we can exploit to apply the sparse SDP relaxation of Waki, Kim, Kojima and Muramatsu [20] to the POP to obtain a roughly approximate solution of the PDE. To comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1996

ISSN: 0747-7171

DOI: 10.1006/jsco.1996.0018